FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices.

نویسندگان

  • Juan Mauricio Garré
  • Guang Yang
  • Feliksas F Bukauskas
  • Michael V L Bennett
چکیده

UNLABELLED We show here that the growth factor FGF-1 is proinflammatory in the spinal cord and explore the inflammatory mechanisms. FGF-1 applied to rat spinal astrocytes in culture initiates calcium signaling and induces secretion of ATP that within minutes increases membrane permeability to ethidium (Etd(+)) and Ca(2+) by activating P2X7 receptors (P2X7Rs) that open pannexin hemichannels (Px1 HCs) that release further ATP; by 7 h treatment, connexin 43 hemichannels (Cx43 HCs) are also opened. In acute mouse spinal cord slices ex vivo, we found that FGF-1 treatment for 1 h increases the percentage of GFAP-positive astrocytes that show enhanced Px1 HC-mediated Etd(+) uptake. This response to FGF-1 was not observed in astrocytes in slices of cerebral cortex. FGF-1-induced dye uptake by astrocytes is prevented by BAPTA-AM or a phospholipase C (PLC) inhibitor. Furthermore, in spinal cord slices, P2X7R antagonists (BBG and A740003) and Px1 HC blockers ((10)Panx1 and carbenoxolone) prevent the increase in Etd(+) uptake by astrocytes, whereas Gap19, a selective Cx43 HC blocker, has no effect on dye uptake at this time. Microglia are not required for the increase in Etd(+) uptake by astrocytes induced by FGF-1, although they are activated by FGF-1 treatment. The morphological signs of microglia activation are inhibited by P2X7R antagonists and (10)Panx1 and are associated with elevated levels of proinflammatory cytokines in cord slices treated with FGF-1. The FGF-1 initiated cascade may play an important role in spinal cord inflammation in vivo SIGNIFICANCE STATEMENT We find that FGF-1 elevates [Ca(2+)]i in spinal astrocytes, which causes vesicular release of ATP and activation of P2X7Rs to trigger opening of Px1 HCs, which release further ATP. This regenerative response occurs in astrocyte cultures and in acute spinal cord slices. In the latter, FGF-1 application promotes the activation of microglia and increases the production of proinflammatory cytokines through mechanisms depending on P2X7 receptors and Px1 HCs. This proinflammatory microenvironment may favor recruitment of leukocytes into the spinal cord and impacts negatively on neuronal structure and function in vivo Any step in these processes provides a potential therapeutic target for treatment of secondary damage in various spinal cord pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels.

Spinal astrocytes are coupled by connexin (Cx) gap junctions and express pannexin 1 (Px1) and purinergic receptors. Fibroblast growth factor 1 (FGF-1), which is released in spinal cord injury, activated spinal astrocytes in culture, induced secretion of ATP, and permeabilized them to relatively large fluorescent tracers [ethidium (Etd) and lucifer yellow (LY)] through "hemichannels" (HCs). HCs ...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

P 94: The Systemic Inflammation after Spinal Cord Injury

Spinal cord injury (SCI) actuate to complex cellular and molecular interactions within the central nervous system in a heave to repair the initial tissue damage. The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms. Neuroinflammation is an important secondary injury process in SCI. The local inflammatory microenvironment within the injured spinal cord ...

متن کامل

Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury

Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...

متن کامل

Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 17  شماره 

صفحات  -

تاریخ انتشار 2016